编程进阶网编程进阶网
  • 基础组成体系
  • 程序编程原理
  • 异常和IO系统
  • 六大设计原则
  • 设计模式导读
  • 创建型设计模式
  • 结构型设计模式
  • 行为型设计模式
  • 设计模式案例
  • 面向对象思想
  • 基础入门
  • 高级进阶
  • JVM虚拟机
  • 数据集合
  • Java面试题
  • C语言入门
  • C综合案例
  • C标准库
  • C语言专栏
  • C++入门
  • C++综合案例
  • C++专栏
  • HTML
  • CSS
  • JavaScript
  • 前端专栏
  • Swift
  • iOS入门
  • 基础入门
  • 开源库解读
  • 性能优化
  • Framework
  • 方案设计
  • 媒体音视频
  • 硬件开发
  • Groovy
  • 常用工具
  • 大厂面试题
  • 综合案例
  • 网络底层
  • Https
  • 网络请求
  • 故障排查
  • 专栏
  • 数组
  • 链表
  • 栈
  • 队列
  • 树
  • 递归
  • 哈希
  • 排序
  • 查找
  • 字符串
  • 其他
  • Bash脚本
  • Linux入门
  • 嵌入式开发
  • 代码规范
  • Markdown
  • 开发理论
  • 开发工具
  • Git管理
  • 百宝箱
  • 开源协议
  • 技术招聘
  • 测试经验
  • 职场提升
  • 技术模版
  • 关于我
  • 目标清单
  • 学习框架
  • 育儿经验
  • 我的专栏
  • 底层能力
  • 读书心得
  • 随笔笔记
  • 职场思考
  • 中华历史
  • 经济学故事
  • 基础组成体系
  • 程序编程原理
  • 异常和IO系统
  • 六大设计原则
  • 设计模式导读
  • 创建型设计模式
  • 结构型设计模式
  • 行为型设计模式
  • 设计模式案例
  • 面向对象思想
  • 基础入门
  • 高级进阶
  • JVM虚拟机
  • 数据集合
  • Java面试题
  • C语言入门
  • C综合案例
  • C标准库
  • C语言专栏
  • C++入门
  • C++综合案例
  • C++专栏
  • HTML
  • CSS
  • JavaScript
  • 前端专栏
  • Swift
  • iOS入门
  • 基础入门
  • 开源库解读
  • 性能优化
  • Framework
  • 方案设计
  • 媒体音视频
  • 硬件开发
  • Groovy
  • 常用工具
  • 大厂面试题
  • 综合案例
  • 网络底层
  • Https
  • 网络请求
  • 故障排查
  • 专栏
  • 数组
  • 链表
  • 栈
  • 队列
  • 树
  • 递归
  • 哈希
  • 排序
  • 查找
  • 字符串
  • 其他
  • Bash脚本
  • Linux入门
  • 嵌入式开发
  • 代码规范
  • Markdown
  • 开发理论
  • 开发工具
  • Git管理
  • 百宝箱
  • 开源协议
  • 技术招聘
  • 测试经验
  • 职场提升
  • 技术模版
  • 关于我
  • 目标清单
  • 学习框架
  • 育儿经验
  • 我的专栏
  • 底层能力
  • 读书心得
  • 随笔笔记
  • 职场思考
  • 中华历史
  • 经济学故事
  • 01.实现二叉树
  • 02.重建二叉树
  • 03.二叉搜索树后序遍历
  • 04.从上往下打印二叉树
  • 05.二叉树的深度
  • 06.判断平衡二叉树
  • 07.二叉树下一个结点
  • 08.实现对称的二叉树
  • 09.二叉树打印出多行
  • 10.按之字形顺序打印二叉树
  • 11.二叉搜索树第k个结点
  • 12.二叉树的镜像
  • 13.树的子结构

05.二叉树的深度

目录介绍

  • 01.题目要求
  • 02.问题分析
  • 03.实例代码

01.题目要求

  • 问题如下所示:
    • 输入一棵二叉树的根结点,求该树的深度。从根结点到叶子点依次经过的结点(含根、叶结点)形成树的一条路径,最长路径的长度为树的深度。
  • 示例 :

02.问题分析

  • 如果一棵树只有一个结点,它的深度为1。 如果根结点只有左子树而没有右子树, 那么树的深度应该是其左子树的深度加1,同样如果根结点只有右子树而没有左子树,那么树的深度应该是其右子树的深度加1. 如果既有右子树又有左子树, 那该树的深度就是其左、右子树深度的较大值再加1。

03.实例代码

  • 如下所示
    public static int treeDepth(BinaryTreeNode root) {
        if (root == null) {
            return 0;
        }
    
        int left = treeDepth(root.left);
        int right = treeDepth(root.right);
    
        return left > right ? (left + 1) : (right + 1);
    }
贡献者: yangchong211
上一篇
04.从上往下打印二叉树
下一篇
06.判断平衡二叉树