编程进阶网编程进阶网
  • 基础组成体系
  • 程序编程原理
  • 异常和IO系统
  • 六大设计原则
  • 设计模式导读
  • 创建型设计模式
  • 结构型设计模式
  • 行为型设计模式
  • 设计模式案例
  • 面向对象思想
  • 基础入门
  • 高级进阶
  • JVM虚拟机
  • 数据集合
  • Java面试题
  • C语言入门
  • C综合案例
  • C标准库
  • C语言专栏
  • C++入门
  • C++综合案例
  • C++专栏
  • HTML
  • CSS
  • JavaScript
  • 前端专栏
  • Swift
  • iOS入门
  • 基础入门
  • 开源库解读
  • 性能优化
  • Framework
  • 方案设计
  • 媒体音视频
  • 硬件开发
  • Groovy
  • 常用工具
  • 大厂面试题
  • 综合案例
  • 网络底层
  • Https
  • 网络请求
  • 故障排查
  • 专栏
  • 数组
  • 链表
  • 栈
  • 队列
  • 树
  • 递归
  • 哈希
  • 排序
  • 查找
  • 字符串
  • 其他
  • Bash脚本
  • Linux入门
  • 嵌入式开发
  • 代码规范
  • Markdown
  • 开发理论
  • 开发工具
  • Git管理
  • 百宝箱
  • 开源协议
  • 技术招聘
  • 测试经验
  • 职场提升
  • 技术模版
  • 关于我
  • 目标清单
  • 学习框架
  • 育儿经验
  • 我的专栏
  • 底层能力
  • 读书心得
  • 随笔笔记
  • 职场思考
  • 中华历史
  • 经济学故事
  • 基础组成体系
  • 程序编程原理
  • 异常和IO系统
  • 六大设计原则
  • 设计模式导读
  • 创建型设计模式
  • 结构型设计模式
  • 行为型设计模式
  • 设计模式案例
  • 面向对象思想
  • 基础入门
  • 高级进阶
  • JVM虚拟机
  • 数据集合
  • Java面试题
  • C语言入门
  • C综合案例
  • C标准库
  • C语言专栏
  • C++入门
  • C++综合案例
  • C++专栏
  • HTML
  • CSS
  • JavaScript
  • 前端专栏
  • Swift
  • iOS入门
  • 基础入门
  • 开源库解读
  • 性能优化
  • Framework
  • 方案设计
  • 媒体音视频
  • 硬件开发
  • Groovy
  • 常用工具
  • 大厂面试题
  • 综合案例
  • 网络底层
  • Https
  • 网络请求
  • 故障排查
  • 专栏
  • 数组
  • 链表
  • 栈
  • 队列
  • 树
  • 递归
  • 哈希
  • 排序
  • 查找
  • 字符串
  • 其他
  • Bash脚本
  • Linux入门
  • 嵌入式开发
  • 代码规范
  • Markdown
  • 开发理论
  • 开发工具
  • Git管理
  • 百宝箱
  • 开源协议
  • 技术招聘
  • 测试经验
  • 职场提升
  • 技术模版
  • 关于我
  • 目标清单
  • 学习框架
  • 育儿经验
  • 我的专栏
  • 底层能力
  • 读书心得
  • 随笔笔记
  • 职场思考
  • 中华历史
  • 经济学故事
  • 01.冒泡排序
  • 02.插入排序
  • 03.选择排序
  • 04.快速排序
  • 05.希尔排序
  • 06.归并排序
  • 07.堆排序
  • 08.计数排序
  • 09.桶排序
  • 10.基数排序
  • 11.线性排序案例

09.桶排序

目录介绍

  • 1.基本思想
  • 2.排序过程
  • 3.代码实现
  • 4.如何优化
  • 5.复杂度
  • 6.使用场景

1.基本思想

  • 桶排序是计数排序的升级版。它利用了函数的映射关系,高效与否的关键就在于这个映射函数的确定。

2.排序过程

  • 为了使桶排序更加高效,我们需要做到这两点:
    • 在额外空间充足的情况下,尽量增大桶的数量
    • 使用的映射函数能够将输入的 N 个数据均匀的分配到 K 个桶中
  • 同时,对于桶中元素的排序,选择何种比较排序算法对于性能的影响至关重要。

3.代码实现

  • 代码如下所示
    private static final InsertSort insertSort = new InsertSort();
    
    @Override
    public int[] sort(int[] sourceArray) throws Exception {
        // 对 arr 进行拷贝,不改变参数内容
        int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);
        return bucketSort(arr, 5);
    }
    
    private int[] bucketSort(int[] arr, int bucketSize) throws Exception {
        if (arr.length == 0) {
            return arr;
        }
    
        int minValue = arr[0];
        int maxValue = arr[0];
        for (int value : arr) {
            if (value < minValue) {
                minValue = value;
            } else if (value > maxValue) {
                maxValue = value;
            }
        }
    
        int bucketCount = (int) Math.floor((maxValue - minValue) / bucketSize) + 1;
        int[][] buckets = new int[bucketCount][0];
    
        // 利用映射函数将数据分配到各个桶中
        for (int i = 0; i < arr.length; i++) {
            int index = (int) Math.floor((arr[i] - minValue) / bucketSize);
            buckets[index] = arrAppend(buckets[index], arr[i]);
        }
    
        int arrIndex = 0;
        for (int[] bucket : buckets) {
            if (bucket.length <= 0) {
                continue;
            }
            // 对每个桶进行排序,这里使用了插入排序
            bucket = insertSort.sort(bucket);
            for (int value : bucket) {
                arr[arrIndex++] = value;
            }
        }
    
        return arr;
    }
    
    /**
     * 自动扩容,并保存数据
     *
     * @param arr
     * @param value
     */
    private int[] arrAppend(int[] arr, int value) {
        arr = Arrays.copyOf(arr, arr.length + 1);
        arr[arr.length - 1] = value;
        return arr;
    }
    
    
    public interface IArraySort {
        /**
         * 对数组进行排序,并返回排序后的数组
         *
         * @param sourceArray
         * @return
         * @throws Exception
         */
        int[] sort(int[] sourceArray) throws Exception;
    
    }
    
    
    public class InsertSort implements IArraySort {
    
        @Override
        public int[] sort(int[] sourceArray) throws Exception {
            // 对 arr 进行拷贝,不改变参数内容
            int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);
    
            // 从下标为1的元素开始选择合适的位置插入,因为下标为0的只有一个元素,默认是有序的
            for (int i = 1; i < arr.length; i++) {
    
                // 记录要插入的数据
                int tmp = arr[i];
    
                // 从已经排序的序列最右边的开始比较,找到比其小的数
                int j = i;
                while (j > 0 && tmp < arr[j - 1]) {
                    arr[j] = arr[j - 1];
                    j--;
                }
    
                // 存在比其小的数,插入
                if (j != i) {
                    arr[j] = tmp;
                }
    
            }
            return arr;
        }
    }

4.如何优化

  • 1.什么时候最快
    • 当输入的数据可以均匀的分配到每一个桶中。
  • 2.什么时候最慢
    • 当输入的数据被分配到了同一个桶中。

5.复杂度

6.使用场景

贡献者: yangchong211
上一篇
08.计数排序
下一篇
10.基数排序