2.5UDP详细基础介绍
目录介绍
- 01.什么是UDP协议
- 02.UDP包头介绍
- 03.UDP三大特点
- 04.UDP三大使用场景
- 05.UDP应用案例
- 06.看一道面试题
- 10.UDP代码案例
01.什么是UDP协议
- ①UDP协议:
- 面向无连接
- 每个数据报的大小在限制在64k内
- 因为是面向无连接,所以是不可靠协议
- 不需要建立连接,速度快
- UDP对应的协议:
- DNS:用于域名解析服务,将域名地址转换为IP地址。DNS用的是53号端口。
- SNMP:简单网络管理协议,使用161号端口,是用来管理网络设备的。由于网络设备很多,无连接的服务就体现出其优势。
- FTP(Trival File Transfer Protocal),简单文件传输协议,该协议在熟知端口69上使用UDP服务。
02.UDP包头介绍
- 当我发送的 UDP 包到达目标机器后,发现 MAC 地址匹配,于是就取下来,将剩下的包传给处理 IP 层的代码。把 IP 头取下来,发现目标 IP 匹配,接下来呢?这里面的数据包是给谁呢?
- 发送的时候,我知道我发的是一个 UDP 的包,收到的那台机器咋知道的呢?所以在 IP 头里面有个 8 位协议,这里会存放,数据里面到底是 TCP 还是 UDP,当然这里是 UDP。于是,如果我们知道 UDP 头的格式,就能从数据里面,将它解析出来。解析出来以后呢?数据给谁处理呢?
- 处理完传输层的事情,内核的事情基本就干完了,里面的数据应该交给应用程序自己去处理,可是一台机器上跑着这么多的应用程序,应该给谁呢?
- 无论应用程序写的使用 TCP传数据,还是UDP传数据,都要监听一个端口。正是这个端口,用来区分应用程序,要不说端口不能冲突呢。两个应用监听一个端口,到时候包给谁呀?所以,按理说,无论是 TCP 还是 UDP 包头里面应该有端口号,根据端口号,将数据交给相应的应用程序。
image
- 当我们看到 UDP 包头的时候,发现的确有端口号,有源端口号和目标端口号。因为是两端通信嘛,这很好理解。但是你还会发现,UDP 除了端口号,再没有其他的了。
03.UDP三大特点
- 第一,沟通简单,不需要一肚子花花肠子(大量的数据结构、处理逻辑、包头字段)。前提是它相信网络世界是美好的,秉承性善论,相信网络通路默认就是很容易送达的,不容易被丢弃的。
- 第二,轻信他人。它不会建立连接,虽然有端口号,但是监听在这个地方,谁都可以传给他数据,他也可以传给任何人数据,甚至可以同时传给多个人数据。
- 第三,愣头青,做事不懂权变。不知道什么时候该坚持,什么时候该退让。它不会根据网络的情况进行发包的拥塞控制,无论网络丢包丢成啥样了,它该怎么发还怎么发。
04.UDP三大使用场景
- 第一,需要资源少,在网络情况比较好的内网,或者对于丢包不敏感的应用。
- DHCP 就是基于 UDP 协议的。一般的获取 IP 地址都是内网请求,而且一次获取不到 IP 又没事,过一会儿还有机会。我们讲过PXE可以在启动的时候自动安装操作系统,操作系统镜像的下载使用的 TFTP,这个也是基于UDP协议的。在还没有操作系统的时候,客户端拥有的资源很少,不适合维护一个复杂的状态机,而是因为是内网,一般也没啥问题。
- 第二,不需要一对一沟通,建立连接,而是可以广播的应用。
- UDP 的不面向连接的功能,可以使得可以承载广播或者多播的协议。DHCP就是一种广播的形式,就是基于 UDP 协议的,而广播包的格式前面说过了。
- 对于多播,我们在讲 IP地址的时候,讲过一个D类地址,也即组播地址,使用这个地址,可以将包组播给一批机器。当一台机器上的某个进程想监听某个组播地址的时候,需要发送 IGMP 包,所在网络的路由器就能收到这个包,知道有个机器上有个进程在监听这个组播地址。当路由器收到这个组播地址的时候,会将包转发给这台机器,这样就实现了跨路由器的组播。
- 在后面云中网络部分,有一个协议 VXLAN,也是需要用到组播,也是基于 UDP 协议的。 -第三,需要处理速度快,时延低,可以容忍少数丢包,但是要求即便网络拥塞,也毫不退缩。
- UDP 简单、处理速度快,不像TCP那样,操这么多的心,各种重传啊,保证顺序啊,前面的不收到,后面的没法处理啊。不然等这些事情做完了,时延早就上去了。而TCP在网络不好出现丢包的时候,拥塞控制策略会主动的退缩,降低发送速度,这就相当于本来环境就差,还自断臂膀,用户本来就卡,这下更卡了
- 当前很多应用都是要求低时延的,它们可不想用 TCP 如此复杂的机制,而是想根据自己的场景,实现自己的可靠和连接保证。例如,如果应用自己觉得,有的包丢了就丢了,没必要重传了,就可以算了,有的比较重要,则应用自己重传,而不依赖于 TCP。有的前面的包没到,后面的包到了,那就先给客户展示后面的嘛,干嘛非得等到齐了呢?如果网络不好,丢了包,那不能退缩啊,要尽快传啊,速度不能降下来啊,要挤占带宽,抢在客户失去耐心之前到达。
- 由于 UDP 十分简单,基本啥都没做,也就给了应用“城会玩”的机会。就像在和平年代,每个人应该有独立的思考和行为,应该可靠并且礼让;但是如果在战争年代,往往不太需要过于独立的思考,而需要士兵简单服从命令就可以了。
05.UDP应用案例
- 网页或者 APP 的访问
- 原来访问网页和手机 APP 都是基于 HTTP 协议的。HTTP 协议是基于 TCP 的,建立连接都需要多次交互,对于时延比较大的目前主流的移动互联网来讲,建立一次连接需要的时间会比较长,然而既然是移动中,TCP 可能还会断了重连,也是很耗时的。而且目前的 HTTP 协议,往往采取多个数据通道共享一个连接的情况,这样本来为了加快传输速度,但是 TCP 的严格顺序策略使得哪怕共享通道,前一个不来,后一个和前一个即便没关系,也要等着,时延也会加大。
- 而QUIC(全称Quick UDP Internet Connections,快速 UDP 互联网连接)是 Google 提出的一种基于 UDP 改进的通信协议,其目的是降低网络通信的延迟,提供更好的用户互动体验。
- QUIC 在应用层上,会自己实现快速连接建立、减少重传时延,自适应拥塞控制,是应用层“城会玩”的代表。这一节主要是讲 UDP,QUIC 我们放到应用层去讲。
- 流媒体的协议
- 现在直播比较火,直播协议多使用 RTMP,这个协议我们后面的章节也会讲,而这个 RTMP 协议也是基于 TCP 的。TCP 的严格顺序传输要保证前一个收到了,下一个才能确认,如果前一个收不到,下一个就算包已经收到了,在缓存里面,也需要等着。对于直播来讲,这显然是不合适的,因为老的视频帧丢了其实也就丢了,就算再传过来用户也不在意了,他们要看新的了,如果老是没来就等着,卡顿了,新的也看不了,那就会丢失客户,所以直播,实时性比较比较重要,宁可丢包,也不要卡顿的。
- 另外,对于丢包,其实对于视频播放来讲,有的包可以丢,有的包不能丢,因为视频的连续帧里面,有的帧重要,有的不重要,如果必须要丢包,隔几个帧丢一个,其实看视频的人不会感知,但是如果连续丢帧,就会感知了,因而在网络不好的情况下,应用希望选择性的丢帧。
- 还有就是当网络不好的时候,TCP 协议会主动降低发送速度,这对本来当时就卡的看视频来讲是要命的,应该应用层马上重传,而不是主动让步。因而,很多直播应用,都基于 UDP 实现了自己的视频传输协议。
- 实时游戏
- 游戏有一个特点,就是实时性比较高。快一秒你干掉别人,慢一秒你被别人爆头,所以很多职业玩家会买非常专业的鼠标和键盘,争分夺秒。
- 因而,实时游戏中客户端和服务端要建立长连接,来保证实时传输。但是游戏玩家很多,服务器却不多。由于维护 TCP 连接需要在内核维护一些数据结构,因而一台机器能够支撑的 TCP 连接数目是有限的,然后 UDP 由于是没有连接的,在异步 IO 机制引入之前,常常是应对海量客户端连接的策略。
- 另外还是 TCP 的强顺序问题,对战的游戏,对网络的要求很简单,玩家通过客户端发送给服务器鼠标和键盘行走的位置,服务器会处理每个用户发送过来的所有场景,处理完再返回给客户端,客户端解析响应,渲染最新的场景展示给玩家。
- 如果出现一个数据包丢失,所有事情都需要停下来等待这个数据包重发。客户端会出现等待接收数据,然而玩家并不关心过期的数据,激战中卡 1 秒,等能动了都已经死了。
- 游戏对实时要求较为严格的情况下,采用自定义的可靠 UDP 协议,自定义重传策略,能够把丢包产生的延迟降到最低,尽量减少网络问题对游戏性造成的影响。
- IoT 物联网
- 一方面,物联网领域终端资源少,很可能只是个内存非常小的嵌入式系统,而维护 TCP 协议代价太大;另一方面,物联网对实时性要求也很高,而TCP还是因为上面的那些原因导致时延大。Google 旗下的 Nest 建立 Thread Group,推出了物联网通信协议 Thread,就是基于 UDP 协议的。
- 移动通信领域
- 在 4G 网络里,移动流量上网的数据面对的协议 GTP-U 是基于 UDP 的。因为移动网络协议比较复杂,而 GTP 协议本身就包含复杂的手机上线下线的通信协议。如果基于 TCP,TCP 的机制就显得非常多余,这部分协议我会在后面的章节单独讲解。
06.看一道面试题
6.1 发微信和看视频
- 微信发送文件,应该是TCP协议,而网络播放视频适合用UDP。
- UDP适用于对网络通讯质量要求不高、要求网络通讯速度能尽量快的实时性应用;
- TCP适用于对网络通讯质量有要求的可靠性应用。
- 播放视频区分关键帧和普通帧,虽然UDP会丢帧但如果只是丢普通帧损失并不大,取而代之的是高速率和实时性。
6.2 面试之TCP和UDP
- 一般面试的时候我问这两个协议的区别,大部分人会回答,TCP 是面向连接的,UDP 是面向无连接的。
- 什么叫面向连接,什么叫无连接呢?在互通之前,面向连接的协议会先建立连接。例如,TCP 会三次握手,而 UDP 不会。为什么要建立连接呢?你 TCP 三次握手,我 UDP 也可以发三个包玩玩,有什么区别吗?
- 所谓的建立连接,是为了在客户端和服务端维护连接,而建立一定的数据结构来维护双方交互的状态,用这样的数据结构来保证所谓的面向连接的特性。
- 例如,TCP 提供可靠交付。通过 TCP 连接传输的数据,无差错、不丢失、不重复、并且按序到达。我们都知道 IP 包是没有任何可靠性保证的,一旦发出去,就像西天取经,走丢了、被妖怪吃了,都只能随它去。但是 TCP 号称能做到那个连接维护的程序做的事情,这个下两节我会详细描述。而UDP 继承了 IP 包的特性,不保证不丢失,不保证按顺序到达。
- 再如,TCP 是面向字节流的。发送的时候发的是一个流,没头没尾。IP 包可不是一个流,而是一个个的 IP 包。之所以变成了流,这也是 TCP 自己的状态维护做的事情。而UDP 继承了 IP 的特性,基于数据报的,一个一个地发,一个一个地收。
- 还有TCP 是可以有拥塞控制的。它意识到包丢弃了或者网络的环境不好了,就会根据情况调整自己的行为,看看是不是发快了,要不要发慢点。UDP 就不会,应用让我发,我就发,管它洪水滔天。
- 因而TCP 其实是一个有状态服务,通俗地讲就是有脑子的,里面精确地记着发送了没有,接收到没有,发送到哪个了,应该接收哪个了,错一点儿都不行。而 UDP 则是无状态服务。 通俗地说是没脑子的,天真无邪的,发出去就发出去了。
- 我们可以这样比喻,如果 MAC 层定义了本地局域网的传输行为,IP 层定义了整个网络端到端的传输行为,这两层基本定义了这样的基因:网络传输是以包为单位的,二层叫帧,网络层叫包,传输层叫段。我们笼统地称为包。包单独传输,自行选路,在不同的设备封装解封装,不保证到达。基于这个基因,生下来的孩子 UDP 完全继承了这些特性,几乎没有自己的思想。
10.UDP代码案例
10.1客户端发送数据
- 客户端发送数据
/**
* 端口号
*/
private static final int PORT = 8080;
/*
* UDP协议发送数据:
* 1.创建发送端Socket对象
* 2.创建数据,并把数据打包
* 3.调用Socket对象发送方法发送数据包
* 4.释放资源
*/
private void udpSendMessage(String serverAddress) {
String content = "yang";
// 创建发送端Socket对象
try {
// 创建发送端Socket对象
DatagramSocket ds = new DatagramSocket();
// 创建数据,并把数据打包
byte[] bys = content.getBytes();
InetAddress byName = InetAddress.getByName(serverAddress);
DatagramPacket dp = new DatagramPacket(bys, bys.length,byName ,PORT);
// 调用Socket对象发送方法发送数据包
ds.send(dp);
// 释放资源
ds.close();
} catch (Exception e) {
e.printStackTrace();
}
}
10.2服务端接收数据
- 服务端接收数据
/*
* UDP协议接收数据:
* 1.创建接收端Socket对象
* 2.创建一个数据包(接收容器)
* 3.调用Socket对象接收方法接收数据包
* 4.解析数据包
* 5.释放资源
*/
private void receive_udp() {
try {
// 创建接收端Socket对象
DatagramSocket ds = new DatagramSocket(PORT);
// 创建一个数据包(接收容器)
byte[] bys = new byte[1024];
DatagramPacket dp = new DatagramPacket(bys, bys.length);
// 调用Socket对象接收方法接收数据包
ds.receive(dp);
// 获取对方的ip
String ip = dp.getAddress().getHostAddress();
// 解析数据
String data = new String(dp.getData(), 0, dp.getLength());
Message message = new Message();
message.obj = data;
message.what = 2;
handler.sendMessage(message);
// 关闭数据库
ds.close();
} catch (Exception e) {
e.printStackTrace();
}
}