07.迪米特原则介绍
目录介绍
- 00.问题思考分析
- 01.前沿简单介绍
- 02.何为高内聚松耦合
- 03.内聚和耦合关系
- 04.迪米特法则描述
- 05.代码实战一
- 06.代码实战二
- 07.辩证思考与应用
- 08.回顾总结一下
00.问题思考分析
- 1.什么是迪米特原则,这个原则如何理解,如何运用到实际开发,举例说明一下?
- 2.什么是高内聚松耦合,能否举例说明一下?
01.前沿简单介绍
- 迪米特法则。尽管它不像 SOLID、KISS、DRY 原则那样,人尽皆知,但它却非常实用。利用这个原则,能够帮我们实现代码的“高内聚、松耦合”。今天,我们就围绕下面几个问题,并结合两个代码实战案例,来深入地学习这个法则。
- 什么是“高内聚、松耦合”?
- 如何利用迪米特法则来实现“高内聚、松耦合”?
- 有哪些代码设计是明显违背迪米特法则的?对此又该如何重构?
02.何为高内聚松耦合
- “高内聚、松耦合”是一个非常重要的设计思想
- 能够有效地提高代码的可读性和可维护性,缩小功能改动导致的代码改动范围。很多设计原则都以实现代码的“高内聚、松耦合”为目的,比如单一职责原则、基于接口而非实现编程等。
- “高内聚、松耦合”是一个比较通用的设计思想
- 可以用来指导不同粒度代码的设计与开发,比如系统、模块、类,甚至是函数,也可以应用到不同的开发场景中,比如微服务、框架、组件、类库等。
- 在这个设计思想中,“高内聚”用来指导类本身的设计,“松耦合”用来指导类与类之间依赖关系的设计。
- 不过,这两者并非完全独立不相干。高内聚有助于松耦合,松耦合又需要高内聚的支持。
- 什么是“高内聚”呢?
- 所谓高内聚,就是指相近的功能应该放到同一个类中,不相近的功能不要放到同一个类中。相近的功能往往会被同时修改,放到同一个类中,修改会比较集中,代码容易维护。
- 实际上,前面讲过的单一职责原则是实现代码高内聚非常有效的设计原则。
- 什么是“松耦合”?
- 所谓松耦合是说,在代码中,类与类之间的依赖关系简单清晰。即使两个类有依赖关系,一个类的代码改动不会或者很少导致依赖类的代码改动。
- 实际上,前面讲的依赖注入、接口隔离、基于接口而非实现编程,以及讲的迪米特法则,都是为了实现代码的松耦合。
03.内聚和耦合关系
- “高内聚”有助于“松耦合”,同理,“低内聚”也会导致“紧耦合”。关于这一点,我画了一张对比图来解释。图中左边部分的代码结构是“高内聚、松耦合”;右边部分正好相反,是“低内聚、紧耦合”。
image
- 图中左边部分的代码设计中
- 类的粒度比较小,每个类的职责都比较单一。相近的功能都放到了一个类中,不相近的功能被分割到了多个类中。这样类更加独立,代码的内聚性更好。因为职责单一,所以每个类被依赖的类就会比较少,代码低耦合。一个类的修改,只会影响到一个依赖类的代码改动。我们只需要测试这一个依赖类是否还能正常工作就行了。
- 图中右边部分的代码设计中
- 类粒度比较大,低内聚,功能大而全,不相近的功能放到了一个类中。这就导致很多其他类都依赖这个类。当我们修改这个类的某一个功能代码的时候,会影响依赖它的多个类。我们需要测试这三个依赖类,是否还能正常工作。这也就是所谓的“牵一发而动全身”。
04.迪米特法则描述
- 迪米特法则的英文翻译是:Law of Demeter,缩写是 LOD。单从这个名字上来看,我们完全猜不出这个原则讲的是什么。不过,它还有另外一个更加达意的名字,叫作最小知识原则,英文翻译为:The Least Knowledge Principle。
- 关于这个设计原则,我们先来看一下它最原汁原味的英文定义:
- Each unit should have only limited knowledge about other units: only units “closely” related to the current unit. Or: Each unit should only talk to its friends; Don’t talk to strangers.
- 把它直译成中文,就是下面这个样子:
- 每个模块(unit)只应该了解那些与它关系密切的模块(units: only units “closely” related to the current unit)的有限知识(knowledge)。或者说,每个模块只和自己的朋友“说话”(talk),不和陌生人“说话”(talk)。
- 之前讲过,大部分设计原则和思想都非常抽象,有各种各样的解读,要想灵活地应用到实际的开发中,需要有实战经验的积累。迪米特法则也不例外。所以,我结合我自己的理解和经验,对刚刚的定义重新描述一下。注意,为了统一讲解,我把定义描述中的“模块”替换成了“类”。
- 不该有直接依赖关系的类之间,不要有依赖;有依赖关系的类之间,尽量只依赖必要的接口(也就是定义中的“有限知识”)。
05.代码实战一
- 先来看这条原则中的前半部分,“不该有直接依赖关系的类之间,不要有依赖”。我举个例子解释一下。
- 这个例子实现了简化版的搜索引擎爬取网页的功能。代码中包含三个主要的类。其中,NetworkTransporter 类负责底层网络通信,根据请求获取数据;HtmlDownloader 类用来通过 URL 获取网页;Document 表示网页文档,后续的网页内容抽取、分词、索引都是以此为处理对象。具体的代码实现如下所示:
public class NetworkTransporter { // 省略属性和其他方法... public Byte[] send(HtmlRequest htmlRequest) { //... } } public class HtmlDownloader { private NetworkTransporter transporter;//通过构造函数或IOC注入 public Html downloadHtml(String url) { Byte[] rawHtml = transporter.send(new HtmlRequest(url)); return new Html(rawHtml); } } public class Document { private Html html; private String url; public Document(String url) { this.url = url; HtmlDownloader downloader = new HtmlDownloader(); this.html = downloader.downloadHtml(url); } //... }
- 这段代码虽然“能用”,能实现我们想要的功能,但是它不够“好用”,有比较多的设计缺陷。你可以先试着思考一下,看看都有哪些缺陷,然后再来看我下面的讲解。
- 首先,我们来看 NetworkTransporter 类。作为一个底层网络通信类,我们希望它的功能尽可能通用,而不只是服务于下载 HTML,所以,我们不应该直接依赖太具体的发送对象 HtmlRequest。从这一点上讲,NetworkTransporter 类的设计违背迪米特法则,依赖了不该有直接依赖关系的 HtmlRequest 类。
- 如何进行重构,让 NetworkTransporter 类满足迪米特法则呢?我这里有个形象的比喻。假如你现在要去商店买东西,你肯定不会直接把钱包给收银员,让收银员自己从里面拿钱,而是你从钱包里把钱拿出来交给收银员。这里的 HtmlRequest 对象就相当于钱包,HtmlRequest 里的 address 和 content 对象就相当于钱。我们应该把 address 和 content 交给 NetworkTransporter,而非是直接把 HtmlRequest 交给 NetworkTransporter。根据这个思路,NetworkTransporter 重构之后的代码如下所示:
public class NetworkTransporter { // 省略属性和其他方法... public Byte[] send(String address, Byte[] data) { //... } }
- 我们再来看 HtmlDownloader 类。这个类的设计没有问题。不过,我们修改了 NetworkTransporter 的 send() 函数的定义,而这个类用到了 send() 函数,所以我们需要对它做相应的修改,修改后的代码如下所示:
public class HtmlDownloader { private NetworkTransporter transporter;//通过构造函数或IOC注入 // HtmlDownloader这里也要有相应的修改 public Html downloadHtml(String url) { HtmlRequest htmlRequest = new HtmlRequest(url); Byte[] rawHtml = transporter.send( htmlRequest.getAddress(), htmlRequest.getContent().getBytes()); return new Html(rawHtml); } }
- 最后,我们来看下 Document 类。这个类的问题比较多,主要有三点。第一,构造函数中的 downloader.downloadHtml() 逻辑复杂,耗时长,不应该放到构造函数中,会影响代码的可测试性。代码的可测试性我们后面会讲到,这里你先知道有这回事就可以了。第二,HtmlDownloader 对象在构造函数中通过 new 来创建,违反了基于接口而非实现编程的设计思想,也会影响到代码的可测试性。第三,从业务含义上来讲,Document 网页文档没必要依赖 HtmlDownloader 类,违背了迪米特法则。
- 虽然 Document 类的问题很多,但修改起来比较简单,只要一处改动就可以解决所有问题。修改之后的代码如下所示:
public class Document { private Html html; private String url; public Document(String url, Html html) { this.html = html; this.url = url; } //... } // 通过一个工厂方法来创建Document public class DocumentFactory { private HtmlDownloader downloader; public DocumentFactory(HtmlDownloader downloader) { this.downloader = downloader; } public Document createDocument(String url) { Html html = downloader.downloadHtml(url); return new Document(url, html); } }
06.代码实战二
- 再来看一下这条原则中的后半部分:“有依赖关系的类之间,尽量只依赖必要的接口”。我们还是结合一个例子来讲解。下面这段代码非常简单,Serialization 类负责对象的序列化和反序列化。
public class Serialization { public String serialize(Object object) { String serializedResult = ...; //... return serializedResult; } public Object deserialize(String str) { Object deserializedResult = ...; //... return deserializedResult; } }
- 单看这个类的设计,没有一点问题。不过,如果我们把它放到一定的应用场景里,那就还有继续优化的空间。假设在我们的项目中,有些类只用到了序列化操作,而另一些类只用到反序列化操作。那基于迪米特法则后半部分“有依赖关系的类之间,尽量只依赖必要的接口”,只用到序列化操作的那部分类不应该依赖反序列化接口。同理,只用到反序列化操作的那部分类不应该依赖序列化接口。
- 根据这个思路,我们应该将 Serialization 类拆分为两个更小粒度的类,一个只负责序列化(Serializer 类),一个只负责反序列化(Deserializer 类)。拆分之后,使用序列化操作的类只需要依赖 Serializer 类,使用反序列化操作的类只需要依赖 Deserializer 类。拆分之后的代码如下所示:
public class Serializer { public String serialize(Object object) { String serializedResult = ...; ... return serializedResult; } } public class Deserializer { public Object deserialize(String str) { Object deserializedResult = ...; ... return deserializedResult; } }
- 不知道你有没有看出来,尽管拆分之后的代码更能满足迪米特法则,但却违背了高内聚的设计思想。高内聚要求相近的功能要放到同一个类中,这样可以方便功能修改的时候,修改的地方不至于过于分散。对于刚刚这个例子来说,如果我们修改了序列化的实现方式,比如从 JSON 换成了 XML,那反序列化的实现逻辑也需要一并修改。在未拆分的情况下,我们只需要修改一个类即可。在拆分之后,我们需要修改两个类。显然,这种设计思路的代码改动范围变大了。
- 如果我们既不想违背高内聚的设计思想,也不想违背迪米特法则,那我们该如何解决这个问题呢?实际上,通过引入两个接口就能轻松解决这个问题,具体的代码如下所示。
public interface Serializable { String serialize(Object object); } public interface Deserializable { Object deserialize(String text); } public class Serialization implements Serializable, Deserializable { @Override public String serialize(Object object) { String serializedResult = ...; ... return serializedResult; } @Override public Object deserialize(String str) { Object deserializedResult = ...; ... return deserializedResult; } } public class DemoClass_1 { private Serializable serializer; public Demo(Serializable serializer) { this.serializer = serializer; } //... } public class DemoClass_2 { private Deserializable deserializer; public Demo(Deserializable deserializer) { this.deserializer = deserializer; } //... }
- 尽管我们还是要往 DemoClass_1 的构造函数中,传入包含序列化和反序列化的 Serialization 实现类,但是,我们依赖的 Serializable 接口只包含序列化操作,DemoClass_1 无法使用 Serialization 类中的反序列化接口,对反序列化操作无感知,这也就符合了迪米特法则后半部分所说的“依赖有限接口”的要求。
- 实际上,上面的的代码实现思路,也体现了“基于接口而非实现编程”的设计原则,结合迪米特法则,我们可以总结出一条新的设计原则,那就是“基于最小接口而非最大实现编程”。
07.辩证思考与应用
- 对于实战二最终的设计思路,你有没有什么不同的观点呢?
- 整个类只包含序列化和反序列化两个操作,只用到序列化操作的使用者,即便能够感知到仅有的一个反序列化函数,问题也不大。那为了满足迪米特法则,我们将一个非常简单的类,拆分出两个接口,是否有点过度设计的意思呢?
- 设计原则本身没有对错,只有能否用对之说。不要为了应用设计原则而应用设计原则,我们在应用设计原则的时候,一定要具体问题具体分析。
- 对于刚刚这个 Serialization 类来说,只包含两个操作,确实没有太大必要拆分成两个接口。但是,如果我们对 Serialization 类添加更多的功能,实现更多更好用的序列化、反序列化函数,我们来重新考虑一下这个问题。修改之后的具体的代码如下:
public class Serializer { // 参看JSON的接口定义 public String serialize(Object object) { //... } public String serializeMap(Map map) { //... } public String serializeList(List list) { //... } public Object deserialize(String objectString) { //... } public Map deserializeMap(String mapString) { //... } public List deserializeList(String listString) { //... } }
- 在这种场景下,第二种设计思路要更好些。
- 因为基于之前的应用场景来说,大部分代码只需要用到序列化的功能。对于这部分使用者,没必要了解反序列化的“知识”,而修改之后的 Serialization 类,反序列化的“知识”,从一个函数变成了三个。
- 一旦任一反序列化操作有代码改动,我们都需要检查、测试所有依赖 Serialization 类的代码是否还能正常工作。为了减少耦合和测试工作量,我们应该按照迪米特法则,将反序列化和序列化的功能隔离开来。
08.回顾总结一下
- 1.如何理解“高内聚、松耦合”?
- “高内聚、松耦合”是一个非常重要的设计思想,能够有效提高代码的可读性和可维护性,缩小功能改动导致的代码改动范围。“高内聚”用来指导类本身的设计,“松耦合”用来指导类与类之间依赖关系的设计。
- 所谓高内聚,就是指相近的功能应该放到同一个类中,不相近的功能不要放到同一类中。相近的功能往往会被同时修改,放到同一个类中,修改会比较集中。
- 所谓松耦合指的是,在代码中,类与类之间的依赖关系简单清晰。即使两个类有依赖关系,一个类的代码改动也不会或者很少导致依赖类的代码改动。
- 2.如何理解“迪米特法则”?
- 不该有直接依赖关系的类之间,不要有依赖;有依赖关系的类之间,尽量只依赖必要的接口。迪米特法则是希望减少类之间的耦合,让类越独立越好。每个类都应该少了解系统的其他部分。一旦发生变化,需要了解这一变化的类就会比较少。